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Summary

Soils have often been viewed as a black box. Soil biology is difficult to study with the precision we would

wish, due to the presence of considerable soil heterogeneity, a huge diversity of organisms, and a plethora

of interacting processes taking place in a complex physical-chemical environment. We have isolated a tiny

fraction of the known organisms, and the possible interactions of soil parent materials, landscape, land

use, depth and time with the biota mean that we are to some extent still fumbling in the dark. There have

been great advances, but we argue that the pace of advance could be faster. To progress, science needs new

theory and concepts but also acceptable methodologies. Coherent and generally accepted theoretical

knowledge exists in many areas, but there is a shortage of valid and exact methods to test new and

sometimes even old hypotheses. New methods add knowledge, but they also can add to the confusion if

they are not tied to the existing knowledge base. We speculate on how to improve soil biology through

improving the way we perform and interpret research. Can we deal with soil variability? Can we measure

the critical variables with adequate precision to test our hypotheses? Can we avoid reinventing the wheel?

Can we find a balance between the freedom to test new and maybe even controversial ideas and the control

and direction of research required by society?

Introduction

Soil science and soil biology have achieved many successes in

their short period of existence, but one would always like to

achieve more. Topical societal questions concerning global

change, biodiversity, ecosystem services, sustainability and the

need to provide food and fibre to a growing population while

a significant proportion of our landscape is converted to biofuel

production present opportunities, challenges and responsibili-

ties. There is also a much larger audience for our field as soil

biology is now included in general biology courses, including

those in liberal arts colleges. This article is written by soil biol-

ogists and thus it focuses on what we know best, namely soil

biology. Some of the challenges, however, are not unique to this

subject. They may apply to all of soil science, and some even to

most science.

Soil biology is in the midst of a major growth spurt involving

many new researchers in both applied and fundamental studies.

For example, a survey of 525 papers published between 1975 and

1999 on the biodiversity of bacteria and fungi in 10 of the most

often cited journals showed that the number of papers published

on rhizosphere-mycorrhiza increased from eight in 1975 to 80 in

1999 (Morris et al., 2002). The number of published papers

on microbial habitats in soil increased from six to 60 per year

during the same period. Interest in soil fauna has increased to

a similar extent. This can be partly attributed to the interna-

tional biodiversity treaty, which increased funding in numer-

ous countries. The growing awareness of soil organisms as

major players in global climate change and agricultural, forest

and general environmental sustainability has also increased

research opportunities, as have the breakthroughs in the mole-

cular study of both soil fauna and microbiota.

One could claim that this has led and will continue to lead to

major changes and even breakthroughs in our testing of con-

cepts and hypotheses. There is also an increased interest in this

field in many undergraduate institutions, and it has even been

claimed that soils are the last (and greatest) frontier of ecology

(Sugden et al., 2004). However, we argue that soil biology

should and could make even greater contributions to soil

science and science in general, considering the recent funding

and interest.

Coleman (1985) wrote: ‘Studies of ecological interactions in

the soil require skilled usage of concepts from physics, chemis-

try, mathematics and biology’. More than 20 years have passed,

but the argument that ‘skilled usage’ is the prime requisite for

improving soil biology research still holds. We should not only
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adequately adopt concepts from other fields but also develop

new concepts applicable to other fields. However, certain inher-

ent properties of soils and biological systems (large heterogene-

ity, many levels of physical structures including micro-sites, the

difficulty of making direct observations especially at depth,

many different species that are difficult to extract and/or do

not grow on ordinary laboratory media and the wide divergence

of landscapes) make it difficult to perform scientific investiga-

tions with great precision. Experiments must be intelligently

designed and carefully carried out and analysed, particularly

in these exciting and challenging times in our field.

The difficulties involved in testing a hypothesis can evenmean

that ‘well-known facts’ that are simply wrong have a reasonable

chance of surviving for a long time (see, e.g., Hedges et al.,

2000). Less-than-perfectly executed science is not facing

extinction. As readers and contributors to the scientific litera-

ture (including our fair share of less-than-perfect science), with

more than 150 years of combined experience in this field, we

will present and discuss some of the current challenges in soil

biology (and, where appropriate, science in general). Where

possible, we will suggest at least some partial solutions to the

challenges – but often the solution is just improved awareness

of the problem. This paper can hopefully serve to remind us of

some common pitfalls that should be avoided. Fairly simple

steps can usually be taken to ensure that errors, and more

importantly flawed concepts, do not become part of our com-

mon understanding. Science can only progress if we dare to

criticize what we do, even if we have done it for a long time.

Pointing out weaknesses can be a painful process and those

who do so may become less than popular. For example, after

publishing statistical analyses showing that the precision of pro-

jections from hydrological models may be less than previously

thought, the author was accused of ‘undermining the confidence

of stakeholders and users of model predictions’ and also of

undermining the confidence in the science on which they are

based (Beven, 2006). If this attitude is common also in soil biol-

ogy,we look forward to interesting discussions after this paper is

published.

Current challenges in soil biology

Statistical analysis: precision and bias

Problem. Good science should include a testable hypothesis

(which could be a statement, an equation or even a simulation

model) and a generally valid and exact test of this hypothesis

(Popper, 1959/2000). This is not always easy in soil biology. Let

us take a simple example (we use earthworms, for no other rea-

son than that they are well known).

Hypothesis: earthworms increase decomposition rates of

organic matter in the field. How do we test this hypothesis?

We can extract all earthworms from plots (using electricity

repeatedly, five replicates and trenches dug around to hinder

invasion, etc.) and then compare decomposition rates with those

in untreated plots (also with trenches dug around). Wemay find

no significant differences during 3 years, possibly due to the old

earthworm channels present. Perhaps we should continue the

experiment for 10 years? Or perhaps our methods for measuring

decomposition (CO2 fluxes, soil carbon pool changes, etc.) are

not sensitive enough to measure the small changes relative to

the large amounts of heterogeneously distributed soil organic

matter. We would only have a chance of detecting very large

changes. We may obtain a statistically significant difference in

1 year, but one in the opposite direction the following year.

We also perform a laboratory experiment, where we add

earthworms to homogenized soil cleared of worms. Now we

obtain highly significant differences; if we scale the results up

to the field level and project the effects over 30 years we find that

earthworms have a major influence on decomposition rates

(cf. Andrén et al., 2001). However, our field experiment did not

indicate this, and neither did field experiments reported by

other authors. In truth, we have not been able to really test the

hypothesis, but when we publish we have at least added to our

knowledge of earthworms. However, perhaps we only were

able to publish the laboratory results, as a reviewer found the

field results unexciting (see below). It is often the case that the

complexity of process interactions in soils makes it difficult to

obtain clear and unambiguous results in single experiments.

Other good examples can be found in the study of mycorrhiza,

food web interactions, the use of inoculants in biodynamic

agriculture, and (sometimes) rhizobial inoculation. Naturally,

there are sometimes good scientific reasons to believe that no

consistent effects exist, but it is hard to believe that earth-

worms have absolutely no effect on decomposition rates of

organic matter.

Continuing with the example of earthworms, one could argue

that meta-analysis (mining the literature for reports on earth-

worms/decomposition and compiling the results) will provide

a body of knowledge that taken together can be considered as

a valid data set to test our hypothesis. However, such an analysis

may give a very biased result in favour of the influence of worms,

because the results in the published literature will be weighted

towards those that showed a positive and significant effect.

Authors, reviewers and editors tend to select for investigations

that (i) have shown significant differences and (ii) show results

pointing in the direction of their own knowledge (bias). The lack

of significant effects seems to be less interesting, andmost earth-

worm specialists think that earthworms are important. Note

that using current knowledge to evaluate new results is exactly

what a scientist should do; if an author claims that earthworms

convert Ca to N we should be more sceptical (and demand solid

proof; cf. the rise and fall of cold fusion) than if they just report

slightly increased O2 concentrations in a soil with earthworms.

Here, we just point out that this evaluation will introduce

a bias. Other areas of science than soil biology may have even

greater problems with bias and statistical methods, as this

quote from David Balding, Professor of Statistical Genetics,
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may indicate: ‘The abysmal standard of statistical analysis in

much of genetic epidemiology is little short of scandalous’

(Ainsworth, 2007).

An example of the consequences of high variability and low

awareness of statistics can be called the ‘thesis syndrome’.

Assume that a thesis is based on 200 statistical tests (treatment

differences, correlations between variables, etc.), and that only

some of the results are finally included in the thesis. If the 5%

critical significance level isused,wecan (roughly) expect 10 (0.05�
200) significant differences in a randomized data set with no real

treatment effects or correlations. In principle, this could lead to

10 significant differences reported from a data set consisting of

randomnumbers. If this studywas repeated, it would again yield

10 significant differences, but most probably not the same ones

as before. In the real world, most scientists are aware of this

problem of mass significance but its consequences are too often

forgotten. Of course, if we apply the same reasoning to a long

career as a scientist, we will sometimes obtain a type 1 error

(finding differences where none exist), and sometimes a type 2

error (finding no differences where they do exist), even at the 1%

or 0.1% significance levels. This is textbook knowledge, but it is

sometimes forgotten when exciting new results seem to emerge

or when there is excessive pressure for publications.

Solution. The conflicting results of the field and laboratory

experiments on earthworms raise the question: are the differ-

ences due to the poor precision of the field measurements or

are the mechanisms in the laboratory different from those in

the field? To be able to answer this question we have to know

the precisionof themeasurements and interpret our data accord-

ingly. If the discrepancy persists, we can perhaps modify our

laboratory set-up. In principle, improving precision is simple –

just do it by the book,while avoiding introducing bias.However,

in the real world there are a number of obstacles. We do not

always consult a skilled, practically inclined, statistician and

listen to her or his advice before deciding on the final design of

a project. Actually, statistics textbooks contain equations that

can be used to calculate the necessary number of replicates for

a given level of precision, when the variance and/or statistical

distributions are known (a preliminary sampling yielding a fairly

rough estimate will do). If your budget cannot cope with the

necessary number of replicates, do something else. Do not sam-

ple three replicates because you cannot afford more and then

hope for the best; perhaps it is possible to reduce the number of

treatments, sites or soil types instead.

Good science tries to answer the most challenging question

that one thinks is answerable with the techniques that are avail-

able. If the instrument resolution is too poor to resolve the var-

iation existing in a process in nature, no statistical technique that

one could apply to the results is of any value.

To reduce the bias introduced by the selection of positive

results for publication, journals specialized in negative results

are published within several branches of science, including, for

example, ecology (Kotze et al., 2004). However, although this

may have some effect it would be better to address the bias at

the core, not try to balance one bias with another.

Avoiding mass significance, the ‘thesis syndrome’, should

really not be a problem, once it is understood that if you carry

out a lot of tests you will findmore significant differences. How-

ever, in spite of numerous warnings and calls for improvement

(e.g., Hurlbert, 1984; Kvålseth, 1985), the problem remains, and

the current easy access to statistical packages may have made it

worse. Good scientific journals give detailed instructions and

urge authors to consult a statistician (see, e.g., Webster, 2001),

but perhaps it is time for journals (and examination committees)

to include a mandatory evaluation of statistical methods. We

think it is more important for a scientific journal to publish

reasonably solid and correct results than to be first with new

revolutionary findings that later turn out to be products of

flawed methodology. Finally, we must regrettably mention the

wilful misinterpretation or even fabrication of results. This

could probably be caught earlier by critical examination of the

data and their statistical analysis, andmore in-house peer review

prior to publication.

The method/concept gap

Problem. Magid et al. (1997) coined the phrase ‘modeling the

measurable’ but they also wrote ‘and vice versa’, while Elliott

et al. (1996) wrote ‘measuring the modelable’. This little word-

play concerns the critical relationship between models (or con-

cepts) and measurements. One approach is to build a model

of what is measured (e.g. soil carbon dynamics and daily

weather) and exclude factors that are not. In its simplest form,

this curve-fitting approach has little explanatory value and

poor generality. In its more sophisticated form, based on

sound theory and adapted to available (or at least measurable)

data, this approach can be very useful. For example, the IPCC

Tier 1 calculation methods for soil C pool changes, based on

tabulated literature values (IPCC, 1995), or the slightly more

complex five-parameter model describing soil C dynamics

(Andrén & Kätterer, 2001), do not necessarily yield less reli-

able predictions than more comprehensive models.

Another approach is to consider the detailed mechanisms

(e.g. photosynthesis, microbial enzymatic reactions leading to

decomposition of plant remains, food webs in the soil and how

they affect the reactions, etc.) and their interactions in a complex

and comprehensive conceptual model, which can be expressed

as a large set of equations with many variables, parameters and

interdependencies. This is a ‘dictionary approach’; everything

we know about the system is included. Most models are com-

promises between these two approaches.

The large number of parameters required by dictionarymodels

increases the riskof ‘equifinality’,which occurswhen the numbers

of unknown parameters to optimize is large compared with the

size of the data set available for calibration (Beven&Freer, 2001).

This means that for complex models, many possible different

parameterizations are likely to match the observational data
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equally well from a statistical point of view, leading to additional

uncertainty in predictions and/or extrapolation. Therefore, the

analytical methods and available data are often not sufficient to

critically test model concepts.

Models thus need data for calibration and validation (e.g.

measured daily microbial biomass dynamics or the daily input

of root-derived material and its chemical composition). The

question then arises: can wemeasure this? The answer is usually:

not really, but we can measure x, which is correlated to y. Thus

we introduce another step: a calibration factor for conversion

of x to y. Ideally, this factor should have great precision and

generality as well as no bias, but this is seldom the case. For

example, the kEN factor used to estimate nitrogen in chloroform-

extracted ‘soil microbial biomass’ (Jenkinson & Powlson,

1976) has been shown to be highly variable (Joergensen &

Mueller, 1996). Despite this, only a small percentage of the

publications in this subject area have derived their own cali-

bration of the kEN factor for the different soils under study.

Another example of the method/concept gap is that of the

‘active’ soil organic matter fractions used in soil carbon model-

ling. This is related to soil microorganisms and microbial

products estimated by the chloroform fumigation technique

(Jenkinson&Powlson, 1976). In principle, we are given an easily

measurable pool, clearly related to concepts central to our mod-

elling efforts. But the discrepancies between the measurable

changes in the estimates of the ‘soil microbial biomass’ pool

and the concomitant changes in soil mineral nitrogen are often

so large that it is difficult to retain this simple concept of the

active fraction. Magid et al. (1996) examined the ‘active’ soil

organic matter fractions by tracing 14C from homogeneously

labelled plant material through soils by means of various size

and density fractionation methods. The added 14C-labelled

plant material was preferentially utilized by the soil micro-

organisms, and thus the breakdown of native soil organic mat-

ter could not be estimated directly from these data. In order to

isolate meaningful fractions, we have to tear up the fabric of

the soil peds, and by doing so we run the risk of redistributing

and cross-contaminating among the very classes that we con-

ceptually define as distinct, thereby creating ‘ghostly’ artefacts

as well as changing the physical nature of the soil. Thus, the

‘active’ fractions of native soil organic matter are probably

distributed among particles of various size and density and the

holy grail of an active fraction that can be isolated is likely to

remain elusive.

The active fraction is probably best estimated in laboratory

incubations in which the enzymes of the in situ microbial pop-

ulations are allowed to decompose the organic matter. The

active and slow fractions are then estimated by curve-fitting to

the respiration data. The resistant fraction(s) is too refractory

to be estimated in a standard laboratory incubation, and is

often estimated by a chemical fractionation method such as

acid hydrolysis. This leads to pool sizes and turnover rates

that are analytically defined and which have relatively little

inherent variability (Paul et al., 2006). The question remains

however: to what extent can the results from a laboratory

incubation of a disturbed sample be indicative of what hap-

pens in the field? There is the further challenge of relating lab-

oratory incubation data measured at constant temperatures to

the variable temperatures in the field. Recent results indicate

that because of the inherent characteristics of activation ener-

gies derived from basic thermodynamics, increased temper-

atures may result in larger Q10 coefficients for the resistant

components of both litter inputs and native soil organic matter

(Davidson & Janssens, 2006; Conant et al., 2008). This would

affect the interpretation of laboratory data and also has

important implications for calculations of soil carbon dynam-

ics under climate change.

Let us also examine how the precision of the measurements

and the assumptions made can affect the precision of a calibra-

tion. We use an imaginary data set, but y could be the number

of earthworms obtained by careful sorting by hand, and x

could be those obtained by formalin extraction. Let us assume

that we cannot afford a full programme of hand sorting, and

use a linear function to convert the estimate obtained from

formalin extraction to the ‘true’ number of earthworms (repre-

sented by hand sorting). Figure 1 (left) shows the data set, and

the thick linear regression line. The coefficient of determina-

tion seems to be reasonable, with 58% of the variance
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Figure 1 Left: Fifteen observations of a dependent variable y plotted versus an independent variable x and the corresponding regression line ( ;

R2 ¼ 0.58, P ¼ 0.00101) as well as 95% confidence intervals for the regression line (thin lines) and for individual predicted values ( ). The three

observations with the largest residuals correspond to the filled symbols. Right: The same observations but excluding two of the filled symbols as

‘outliers’ and linear (R2 ¼ 0.78) and polynomial (R2 ¼ 0.92) regression lines.
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explained by the model. Thus the correlation coefficient is as

large as 0.76, and the P value indicates a highly significant

regression. However, if we look at the 95% confidence inter-

vals (stippled lines) for individual measurements we can see

that an x value of 10 has a 95% chance of predicting a value

within the y interval ranging from about 2 to 20 (draw a verti-

cal line through x ¼ 10 and see where it intersects the confi-

dence interval lines). We can also look at the regression line

itself and the thin lines showing the 95% confidence limits for

its position and slope. By moving the straight line up and

down and changing its slopes within these limits we can see

that, for example, an x value of 0 will correspond to a y value

somewhere within the range 1–9.

Points that are distant from the regression line (possible out-

liers) can have a significant effect on the regression model and

therefore, on its predictive ability. If such an observation is close

to the mean value of x, but occupies an outlying position on the

y-axis, its presence or absence will move the regression line up

or down (bias) with only marginal effects on the slope. If such

an influential observation is located towards one of the

extreme ends of the x-axis, it will have a high leverage (i.e., it

will mainly affect the slope of the regression). There are tests

available for removing suspected outliers. According to one of

these tests (Belsley et al., 1980), two observations in our data

set were removed (Figure 1, right). Now, the R2 of the regres-

sion line increases by 34% to 0.78, and its slope increases by

35%. However, the removal of these two outliers was based on

the assumption that the relation between x and y was linear.

If it is not, the removal of the ‘outlier’ at the upper end of the

x-axis would not be justified. If we assume that the regression

is not linear, but is best described by a polynomial, we obtain

the stippled curve with a much better fit, R2 ¼ 0.92.

This exercise in data massage thus improved the fit consider-

ably, but we are not sure we have come closer to the truth. Now

we also have to deal with the confidence interval for the non-

linear model, which is beyond our scope here. One can also

question whether we really did the right thing when we took

the data points away? Further, an approximately normal distri-

bution of the sample population is one of the prerequisites for

applying parametric tests. The assumption of normality in our

imaginary data set can be questioned due to its bi-modal distri-

bution. Thus, the F-test and its resulting P value as they were

used here may not be relevant at all, or regression analysis

may be inappropriate under such circumstances (Webster,

1989). There are methods to test for normality, and one can

apply transformations of the input data to obtain normality,

but we will stop here. In conclusion, too much is left open

for interpretation when calibration data show large or even

moderate variation (see Reichstein et al., 2005, for a typical

example).

Another interesting example of how much the choice of

model can influence the interpretation of a data set was recently

presented by Gans et al. (2005), who re-analysed the data

published by Sandaa et al. (1999). The data set contains

information about community DNA from pristine and metal-

contaminated soils. Gans et al. (2005) used a power law to

describe the abundance distribution, which yielded quite dif-

ferent results to those originally reported. More than two

orders of magnitude larger numbers of genomes were calcu-

lated to be present in soil, and the reduction in bacterial diver-

sity due to heavy metal pollution increased from eightfold in

the original analysis to a factor of 1000. We do not have any

views on who is ‘right’ and who is ‘wrong’ in this case, but this

certainly illustrates how crucial the choice of statistical model

can be.

Thus, the method/concept gap shows up in many ways, and

when we use a method that yields an approximation of ‘micro-

bial biomass’, ‘mineral (or plant-available) nitrogen’, ‘protected

carbon’, ‘soil carbon mass at steady-state’ or ‘oribatid abun-

dance’ it is too easy to forget that these are both dependent on

the true value per se and the errors introduced by the physico-

chemical methods and models used (see, e.g., Six et al., 2000).

Solution. Decide why you want to use a model. If the purpose

is practical, for example to calculate national or regional

changes in soil carbon mass over a 30-year period, it may be

a good idea to be very simplistic and use crude approximations,

even using linear approximations of processes that are inher-

ently non-linear (IPCC, 1995). On the other hand, if the purpose

is to increase our understanding of a system and generate new

ideas for experiments, a very complexmodel using parameters of

which some cannot be properly estimated and have to be tuned

to make the model behave may be the best choice.

Improving the precision of calibration functions can be as sim-

ple as reducing their generality, that is using different parameter

values or even functions for different cases (soil types, carbon

content, etc.). However, in many cases, calibration functions

may have only moderate precision despite reasonably large R2

values, and then confidence limits should be given and their

consequences for the results discussed, including possible bias.

A simple way to sustain awareness of themethod/concept gap

is to avoid using conceptual terms as far as possible when dis-

cussing results. For example, one can refer to a measurement as

the ‘heavy fraction’ instead of ‘protected’, etc., but the end goal

must always be to minimize the method/concept gap, preferably

to zero.

Paradigm shifts

Problem. The idea behind classical humus analysis is to solu-

bilise various fractions of humus to characterize soil organic

matter by boiling, or extracting, soil in acids and bases. Early

chemical analysis of both soil organicmatter and its fractions led

to the belief that the resistant components were very aromatic

(Kononova, 1966). However, since the 1970s, NMR (nuclear

magnetic resonance) and other less destructive methods have

been used to investigate the structure of soil organic matter

(Wilson, 1981). These methods indicate a large content of
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long-chain aliphatic and/or waxy groups and a smaller content

of aromatics than the classical methods (Zech et al., 1985).

Thus, a significant part of the aromatics reported from classi-

cal analysis probably was synthesized during analysis (Piccolo

et al., 1999). There were some problems, though; the new

methods were not fully quantitative, they were expensive and

slow and difficult to interpret when applied to the soil milieu

with its abundance of iron and other cations. We were intro-

duced to a plethora of diagrams showing wavy lines lacking

scale on at least one axis that were difficult for the average

reader to interpret (see Hedges et al., 2000, for an example).

Some researchers, inspired by these observations, claim that

humus per se is a relatively low molecular weight substance

and that the observed macromolecular structure can be ex-

plained as an aggregate of mixtures of various metal-cation

complexes (Simpson et al., 2002).

It seems to be taking a long time to decide on what humus is

and what properties it has. Then again, it might be futile to ask

for a single definition of humus, as although the general struc-

ture of soil organic matter may be fairly constant across soil

types with similar C : N ratios, there are differences depending

on the source of organic matter as well as the soil type (see, e.g.,

Hedges et al., 2000). The revision of how we view humus may,

however, have been slowed down by the inertia that makes

paradigm shifts so difficult (Kuhn, 1962); ‘well-known facts’

can survive for a long time, even when they are found to be at

least not generally true.

Pathways of carbon uptake and translocation bymycorrhizal

root systems are often complex, and simplistic assumptions

about the sources of carbon for mycorrhiza may have to be

abandoned. Many studies concerning nutrient cycling in soils

have been based on hydroponic cultures, postulating the

enhanced rate of uptake of key nutrients by the secretion of

organic acids in mycorrhiza-free systems. It is essential to study

plants, mycorrhiza and soils holistically to make significant

advances in understanding of the mechanisms of enhanced

mobilization and acquisition of many nutrients from soil or

the external detoxification of metals (Jones et al., 2004). This

might force us to rethink the validity of the simplifications of

biology that are incorporated in nutrient and C flux models

(Högberg & Read, 2006).

The following example is a case in point.Measurements of 13C

in fungal sporocarps are useful for assessing mycorrhizal or

saprotrophic status. Simultaneous measurement of 14C in the

sporocarps provides additional insight into mycorrhizal status.

By measuring sporocarps, needles and litter from a site in

Oregon, along with archived sporocarps, Hobbie et al. (2002)

found clear separation of carbon sources for known mycorrhi-

zal and saprotrophic fungi. The 14C results for needles and

mycorrhizal fungi indicated that small amounts of C may arise

from stored carbohydrates, amino acids, organic nitrogen

uptake and incorporation of soil-respired CO2 by anaplerotic

(intermediates of the citric acid (TCA) cycle) or photosyn-

thetic pathways.

It is quite understandable if soil biologists hesitate to embrace

these results and revise our simple models, but this is possibly an

area where more exact measurements may force us to abandon

current simplifications.

Solution. Theparadigm concept should not be emphasized too

much, as it only reflects the tendency of humans to stick to what

we think we know (particularly if it is our own invention) and

should not be used as a critique of science in general. The scien-

tific method, when properly used (strictly testing a hypothesis

and accepting the outcome), should help considerably. How-

ever, the increased workload and productivity demands on sci-

entists todaymay create a similar effect; you are too busy to take

in new information and therefore stick towhat youknow.On the

other hand, it is possible that somemay be too eager to abandon

the set of theories that we believe represent the truth, because

new and revolutionary theories (or simply over-emphasizing the

generality of your ownobservations) are perceived to be away to

fame and reputation. The solution to these problems, as well as

to several other issues of scientific quality, is to allotmore time to

concept development and critical evaluation of all new results in

relation to previously published literature.

Reinventing the wheel: on forgotten literature

Problem. Despite the critical view of meta-analysis expressed

earlier in this paper, we certainly recommendmore efforts in this

direction. This can also be called critical reviewing. The accu-

mulated mass of published papers is increasing at a frightening

rate, but fortunately we can search, sort and download papers

with great ease these days.However, nobody (at least none of the

authors) can read and comprehend all the published literature

in, for example, soil biology; this can only be achieved in nar-

rower fields. Thus, critical reviews are extremely valuable and

will become even more so. Perhaps the critical review and syn-

thesis of a research area is themost valuable task a researcher can

perform. This is not recognized enough. Wilson (1998) argued

that the greatest challenge within science today is the accurate

and complete description of complex systems (such as soils) and

that there is a lack of attention paid to synthesizing established

knowledge. We may add to our body of information, but often

not to our understanding of this information.

Note that we are not claiming that good critical reviews

and syntheses are lacking in the published literature; such

works have been published recently (e.g. Bardgett et al., 2005;

Coleman & Whitman, 2005; Hooper et al., 2005). There is also

an extensive and often excellent literature that is not down-

loadable, and perhaps not even found in searchable data bases.

A surprisingly large proportion of results and ideas published

in current papers can be found (at least in fairly similar forms)

in earlier, pre-computer literature. There is nothing wrong with

revisiting old territory, particularly when new methods are

available. It would be preferable, though, if the modern visi-

tors were aware of the pioneers, or at least of their maps of the
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territory. The readers of the modern paper can benefit greatly

from reading early literature. Justice is also best served when

the original progenitors of ideas are given adequate credit.

Let us give an example from soil biology. Two somewhat

mathematically inclined soil scientists devised an analytical

model of soil carbon dynamics (Andrén & Kätterer, 1997).

When the manuscript had been submitted, a French reviewer

politely pointed out that most of the equations had been set

up, solved and published in French by Hénin & Dupuis (1945)

and Hénin et al. (1959). If the authors of the 1997 paper had

been aware of this pioneering work, they could have avoided

reinventing the wheel, saved many days and nights of hard

work, and perhaps produced a better paper.

Another example, this time from soil organic matter-tracer

research, highlights both the importance of methodology and

the need to refer to the pre-computer literature. Löhnis (1926)

defined priming as the additional decomposition of native soil

organic matter resulting from added substrate. This interesting

concept could not be tested until the availability of tracers nearly

30 years later. Using tracers, Bingeman et al. (1953) showed

that the added substrate truly caused an increased decomposi-

tion of native soil organic matter. After much discussion, this

was accepted in the literature. Now, new techniques based

on the availability of naturally occurring 13C arising from

switches between C3 and C4 photosynthetic plant types as well

as enhanced CO2 concentration studies and the use of stable

isotope probing are bringing in a group of young investigators

who are not familiar with the detailed literature on priming

from 50 years ago. The addition of a tracer allows one to mea-

sure both the tracer and the original soil C in the presence of

added substrate from the tracer. Often, the added tracer

results in a turnover, especially in the biomass where the tracer

replaces the original C or N with an apparent, but not neces-

sarily actual, loss of the soil constituent. This is not priming as

originally defined, although this term has been used in this

context. The recent review of this literature by Fontaine et al.

(2004), who clearly redefined priming and cited the original lit-

erature, has not completely stopped this misuse. Priming can

only be determined by combining the tracer study with a mass

balance of the carbon contents in all the fractions to determine

whether there has been a net loss of carbon, not just turnover.

Solution. We suggest that today’s scientists need to allot more

time to adequately reflect on and incorporate the results of pre-

vious studies and syntheses into their work.We also suggest that

this is an area where scientific societies and academies could

increase their efforts, perhaps by offering short-term scholar-

ships for writing reviews, which besides being published could

constitute excellent keynote presentations at conferences and

workshops. Many scientific journals now publish reviews, and

we encourage readers to write and submit manuscripts.

The lack of awareness of early literature is partly an educa-

tional problem, partly a question of accessibility. It should be

easy for senior scientists and/or supervisors to put paper copies

of selected early works in the hands of the students, and we are

quite convinced these will enjoy and learn from the experience.

They will not only be rewarded with new (or old) scientific

insights, but probably also be baffled and amused by the differ-

ences in writing styles between now and then. Concerning avail-

ability, it is our hope that as much as possible of the ante .pdf

literature will be scanned and become available in electronic

form, or at least available as references in common scientific

reference data bases. It is perhaps asking too much of the bud-

ding Google generation of soil biologists that they spend con-

siderable time leafing through dog-eared index cards in stuffy

libraries. The language barrier is a huge problem for those of

us with limited skills in German, French, Russian, Japanese,

or even Swedish and Danish; much of the early work was not

published in English. Good translations to English, at least of

benchmark papers, should be supported and read.

Avoidable mistakes

Problem. There are some fairly serious flaws in reasoning

being published these days, as they have in the past. This is not

at all bad for the progress of science; instead, the free presenta-

tion of ideas makes criticism and corrections possible. Fortu-

nately, some flaws are easily discovered and disposed of, once

a very basic understanding of systems and system boundaries is

attained. Here are a few admittedly idiosyncratic examples, and

we are convinced that every reader could add to the list.

Organic farming has been reported to give less leaching of

nitrogen to groundwater thanmodern agriculture that uses com-

mercial fertilizers. In one 6-year experiment ‘organic’ plots

leached 34 kg N ha�1 year�1, and ‘conventional’ plots leached

38 kg (Torstensson et al., 2006). It may seem that the organic

farming plots leached less, and put less strain on the environ-

ment. However, ‘conventional’ farming systems can include,

for example, catch crops to mop up N during autumn, and

these plots showed annual loads as small as 25 kg N ha�1

year�1. Thus, ‘conventional with catch crop’ had the smallest

leaching loads of the investigated systems in this study, but

often only ‘organic’ and a not very clever ‘conventional’ crop-

ping system are compared.

However, themain purpose of agriculture is to produce a vital

product, for example, wheat grain. If a given amount of wheat is

produced in a smaller area, the remaining area can be used for

other purposes, for example biofuels, productive forests or nat-

ural reserves. Therefore, an equally rational unit for N leaching

is amount leached per ton of crop yield. In the example above,

‘organic’ plots leached 17 kg nitrogen per ton of crop yield,

‘conventional’ leached 6.6 kg nitrogen per ton, and ‘conven-

tional with catch crop’ leached 4.1 kg N per ton (Torstensson

et al., 2006). Thus the context, or system boundary, heavily

influences the result. We could also mention that system

boundaries (in another sense) always have to be taken into

account when discussing remedies to greenhouse gas emissions

from soils; it is of little practical value to introduce measures
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that reduce CO2 emissions from a soil, if emissions of more

potent greenhouse gases such as CH4 or N2O increase drasti-

cally (Robertson et al., 2000).

Another factor that must be considered is the difference

between concentration and mass. Assume that we have a 30-cm

topsoil that is in balance with respect to C mass. The topsoil

C pool is 10 kg m�2, the annual C input is 1 kg m�2, and k, the

decomposition rate constant of soil organic C is 0.1 year�1

(see, e.g., Andrén & Kätterer, 2001). Now, assume that one

plot is on a sandy soil (bulk density 1600 kg m�3) and another

on a clay soil (bulk density 1200 kg m�3). Calculating the con-

centrations (10 kg/(0.3 m3 � 1600 kg m�3) for sand) gives the

following results for organic carbon content: sandy soil 2.1%,

clay soil 2.8%. Thus, the observation that clay soils seem to

protect soil C and have greater C concentrations (which are

wrongly equated to more C mass) can be partly explained by

bulk density differences.

Solution. It is tempting to state that it is easy to avoid the

avoidable mistakes, but of course it is not. As pointed out else-

where in this text, soil biologists must broaden their concepts

and walk into unknown territory, where simple mistakes are

often made: ‘If we don’t continuously extend our own scientific

frontiers, we should not be surprised when others do it in a way

we usually don’t like’ (Bouma, 2005). Thus, there are (and

should be) many scientific disciplines involved, and nobody

can master all of them. Cooperation is one keyword and for

the examples given here, ‘counting atoms’ (i.e. calculating mass

balances using the correct unit) is a good solution. Always be

aware of the system boundaries, and try to reach at least a basic

understanding of the models used in your work.

On research funding

Problem. Research performed at universities is usually funded

by taxpayers, and the funds are not unlimited. There must be

a selection process leading to the most efficient use of the avail-

able resources. Theremust also be a balance between ‘academic’

research mainly driven by curiosity and more ‘goal-oriented’

research. The first category is not intended to be immediately

useful to the taxpayers right now, but it is considered necessary

to make really groundbreaking discoveries possible. The second

category is supposed to give results that are useful for society in

the short term.

It has beenpointedout that universities haveundergonea ‘sec-

ond academic revolution’ (Etkowitz, 2000), meaning that uni-

versities should become more useful to society as well as more

entrepreneurial, and contribute to economic growth, solve acute

environmental problems, etc. This leads to a shift fromacademic

to goal-oriented research. As pointed out in the Introduction,

soil biology has risen to this challenge, but the transition cer-

tainly has drawbacks.When the degree of influence of the donor

on the individual scientist’s agenda increases (i.e. the proportion

of funding through short-term contracts increases), it affects

how we do research. Scientists spend a large fraction of their

time hunting for funding (perhaps with a 5% success rate), hon-

ing their skills in science, but particularly inwriting applications.

This is not a very efficient use of the time and scientific compe-

tence of highly skilled professionals.

Donors may also set up ‘boundary conditions’ that are not

directly related to the scientific quality of the ideas proposed.For

example, projects shall be: useful for solving problems in society;

of a certain size, often large; spread between different institu-

tions and countries; multi-disciplinary; address sociological,

economic and gender issues, etc. Donors may argue that the

decisions are still in the hands of the scientific community and

based on scientific quality, because the applications are sent to

scientists for peer review. However, the reviewers still have to

judge by the more or less narrow criteria set up in the call for

proposals, so the relative value of the research ideas per se for

the final outcome may vary.

Multi- or trans-disciplinary research is not inherently bad

(sometimes even preferable), but it does increase the time spent

in administration and learning the basics of other disciplines.

Social skills and good contact nets are valuable within such

a system. In the words of Bernard Dixon, the former editor of

New Scientist: ‘Look around the institutions of science today

and you’ll find them headed by people who, whatever their

record in research, are streetwise and assertive’ (Dixon, 2007).

Again, this is not necessarily bad, but scientific excellence is no

longer the only, or perhaps even the most important, criterion

for selection.

To stay in business, the researcher not only has to write good

applications presenting exciting ideas (which is a good thing),

but also has to zoom in on research areas formally or informally

prioritized by donors. This leads to a funnelling of soil biologists

into currently popular areas (e.g. biodiversity and C sequestra-

tion). Thus, international treaties and conventions channel

research into directions that are decided at high-level meetings,

and although these directions also depend on science, we should

be aware of the fact that other factors such as national interests

and the relative strength of lobby groups influence the outcome.

Agenda 21, the 1992 document from the United Nations Con-

ference on Environment and Development, highlighting biodi-

versity, is a good example. The ideas presented in this document

have been very beneficial for soil biology as well as for biodiver-

sity research in general. However, the document seems to pos-

tulate that biodiversity (not very clearly defined, but probably

the number of species within, for example, an ecosystem) is

‘important’ for ecosystem functioning and that we should allo-

cate funds to further the understanding of this importance (see

also Andrén & Balandreau, 1999). This has, of course, resulted

in increased funding for research aimed at further proving the

importance of biodiversity.

A recent, comprehensive consensus paper on biodiversity and

ecosystem functioning reveals that more than a decade of

research funding on biodiversity versus ecosystem function has

led to few certain conclusions. Two examples:
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‘3) The effects of species loss or changes in composition, and

the mechanisms by which the effects manifest themselves, can

differ among ecosystem properties, ecosystem types, and path-

ways of potential community change.

4) Some ecosystems properties are initially insensitive to spe-

cies loss because (a) ecosystems may have multiple species that

carry out similar functional roles, (b) some species may contrib-

ute relatively little to ecosystem properties, or (c) properties may

be primarily controlled by abiotic environmental conditions.’

(Hooper et al., 2005)

Even if the general benefits to ecosystem function of high bio-

diversity are not as great as postulated, our responsibility as

humans to protect species from extinction is still the same, and

research on how to avoid species extinction is crucial. Still, the

questions should be asked: what if biodiversity per se is not so

‘important’? If so, perhaps the efforts could have been better

directed towards other areas of soil biological research?

The IPCC/Kyoto greenhouse gas reporting and mitigation

agreement is another example of the channelling of resources

due to signed conventions. For soil biology, this means that soil

carbon pools, CO2, N2O and CH4 emissions and the processes

that control them receive attention and funding. Long-term

experiments designed for other purposes are re-visited and used

to calculate soil carbon dynamics, and eddy co-variation towers

are being erected in most ecosystems. More or less sophisticated

soil carbon models are being devised, calibrated and validated.

After IPCC had realized that soils were major players, thou-

sands of soil scientists all over the world have been redirected to

research on greenhouse gases. This effort has yielded much valu-

able knowledge, and we can now make at least semi-quantitative

projections of what will happen to soil carbon stocks if climate

changes by x or carbon input changes by y. The basic principles

are well understood, although some very important details are

debated (see, e.g., Reichstein et al., 2005; Conant et al., 2008 sub-

mitted). The ‘only’ serious problem remaining is the fairly poor

precision in the estimates and projections.

However, the questions should be asked: Has the concentra-

tion of soil biology into areas demanded by society gone too

far? Could it be that IPCC-generated reporting has led us too

far towards book-keeping, that is calculating high-precision,

‘accountable’ changes in soil carbon pools, etc?

Solution. For the individual scientist or research group the

short-term solution is to adapt to the situation, and try to be

as successful as possible when applying for funds, maximizing

the return per effort. A combination of experienced scientists

with a good track record and knowledge of the history of the

field with young scientists trained in new methodologies may be

the most successful approach. The whole process of preparing

and reviewing proposals that have a 5–10% chance of success is

wasteful, and the use of short pre-proposals to limit the number

of full-blown proposals a scientist has to work on can reduce the

waste of time and effort for both those writing the proposals and

the multitude of reviewers that must read them.

The degree of societal control of the scientist’s agenda is con-

tinuously debated, and there is no single, perfect, solution. There

is the question of how much money we should reserve for

research and higher education, but perhaps the most important

issue is how universities and research institutes are seen by soci-

ety. Are we considered capable of setting the research agenda

ourselves? The pendulummay have swung too far towards soci-

etal control, productivity demands and short term-funding, and

if we are going to attract bright students that will become the

next generation of soil biologists we will have to offer them

considerable freedom to develop their own ideas and at least

the possibility of a solid economic platform whilst pursuing

a career in science.

Concluding remarks

The central problem that has to be solved for soil biology to

move forward at an accelerating rate thus concerns the possibil-

ity to test hypotheses in a stringent way. The complexity of soil

and soil organisms and its regional distributionmakes it difficult

to test hypotheses with a clear yes or no that is applicable to all

areas of the world. There must be a way to reject a hypothesis.

Without this we end up with idiosyncratic examples and not

much new knowledge.

Soil biology has deep roots in applied agriculture and forestry,

andmuchof agriculture’s success has been empirically based. The

adoption of practices depended on a certain level of success, not

on a complete knowledge of the processes and organisms

involved.Maybe thehypothesisbeing testedwas:Will suchaprac-

tice work in an economically viable way? If we had waited for

a full theoretical explanation of how a certain practice increases

the yield before applying it we would not have seen the huge

increases in productivity and product quality in the middle of

the last century. Only later was it found that some of the practices

and particularly their misuse could be harmful to the environ-

ment, but overall the applied approach has been very successful.

Soil biology is nowmoving into many other areas and we can

certainly supply answers to several of the major environmental

questions of today. Careful forethought concerning the most

important questions that can be answered with the available

technology togetherwith a goodknowledge of past research into

these hypotheses and questions will help open even further and

faster the black box of soil biology. As we are so limited by the

methods available, we also need to be heavily involved in the

development of new technology that will not only help advance

our field but also be of use in related areas.
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