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A simple soil carbon model, the Introductory Carbon Balance Model (ICBM), is useful for projecting soil 
C dynamics in temperate and tropical land-use systems. A spreadsheet-based version of ICBM is 
presented, with an emphasis on African and short-and long term projections under variable conditions 
(climate, crops, soil). ICBM has two compartments, young and old soil C, and five parameters, intended 
to project soil C dynamics in a 30-year perspective even when detailed data are lacking. Information 
necessary is a rough estimate of annual carbon input to soil, a coarse measure of residue quality and 
some information about climate. If basic weather station data and water-related soil properties are 
available, more exact projections can be made. Typically, the model is used for answering questions 
such as: (1) If crop residues are returned to the field, how much will soil carbon increase after 30 years? 
(2) With limited local data available, will rough estimates (climate zone and crop yield etc) still make 
projections possible? Compared with more complex models, this approach is rapid and simple and yet 
still gives accurate results. The model is available as an Excel® spreadsheet, and which projections can 
be made and effects of different agricultural treatments can be compared. Here, agricultural field 
experiments in Africa are used to show how ICBM rapidly can be parameterized for conditions different 
from those it was originally calibrated for, and how projections can be made from this base 
parameterization. Concepts behind modeling approaches, as well as possible improvements, are also 
discussed. 
 
Key words: Soil carbon, agriculture, modeling, carbon sequestration, Africa. 

 
 
INTRODUCTION 
 
This paper presents a spreadsheet-based version of 
Introductory Carbon Balance Model (ICBM) in order to 
aid soil scientists and managers of long-term experi-
ments, with an emphasis on African conditions, with 
short-and long term projections under variable conditions 
(climate, cropping system and soil types). 

Modeling of soil C dynamics has received a lot of   atten- 

tion during the last decades. Soil carbon and its dynamics 
has been recognized for a long time as a crucial soil 
component for example, (Tenney and Waksman, 1929; 

Henin and Dupuis, 1945), but with the recognition of soils 
as sources/sinks for the greenhouse gas CO2, there has 

been a major surge in the development of soil carbon 
modeling. For example, GEFSOC, a generally  applicable 
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coupled GIS/modeling system using the well known 
models RothC (Coleman and Jenkinson, 1996) and 
Century (Parton et al., 1987), as well as IPCC. Tier 1 
calculations have recently been presented (Milne et al., 
2007). The Introductory Carbon Balance Model (ICBM) 
(Andrén and Kätterer, 1997) was devised as an interme-
diate between IPCC Tier 1 linear calculations (IPCC, 
2004) and there are more complex modeling approaches 
(Grace et al., 2006). A variety of models have been used 
to simulate soil carbon dynamics within African 
agricultural field experiments, including RothC (Diels et 
al., 2004; Farage et al., 2007b; Kamoni et al., 2007) and 
Century (Woomer, 1993; Tschakert et al., 2004; Farage 
et al., 2007a; Kamoni et al., 2007), but  Agricultural 
Production Systems Simulator (APSIM) (Micheni et al., 
2004) and other models have also been applied. The 
complexity of these models are related to the number of 
storage pools used to simulate soil carbon dynamics, and 
naturally also to how many and how complex drivers are 
included in the model (for example, climate drivers and 
plant growth sub-models). The simplest models suitable 
for simulating long-term dynamics over some periods of 
decades, utilize a single dynamic pool plus an additional, 
inert, pool that resides outside of the model dynamics 
(McNair et al., 2007).  

On the other hand, the more complex models utilize 
between four (RothC) and six (Century) more or less 
dynamic soil carbon pools and have adequate complexity 
to at least attempt to model short-term dynamics (on the 
order of weeks and months) as well.  

ICBM was originally conceptualized with one rapid and 
one slow soil carbon pool (Andrén and Kätterer, 1997), 
which is the minimum required to capture aspects of both 
short and long-term dynamics. If required, a third inert 
carbon pool can be readily added to ICBM to represent 
an inert partition of the total soil carbon mass. In terms of 
model functionality, this partition then remains static 
outside the dynamics of the two active pools.  

Well-documented models such as RothC, Century and 
APSIM provide pre-defined default or “standard” 
parameter values, primarily identified from calibrations to 
long-term field trials in the regions where these models 
were developed (England for RothC, Great Plains, U.S.A. 
for Century,  and  Australia  for  APSIM).  These models 
have all been subsequently tested in numerous climate 
zones throughout the world, and it is generally assumed 
that these standard parameter sets are robustly portable. 
However, in a recent study using African data, standard 
decomposition rates in the RothC model had to be 
doubled   to   model  a  long-term  dataset  from   Ibadan,  
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Nigeria (Diels et al., 2004). As with the aforementioned 
models, ICBM was originally parameterized to a long-term 

field trial, in this case in Uppsala, Sweden (Andrén and 
Kätterer, 1997). Recently, a climate- and soil-based 
activity index was presented for ICBM, which in theory, 
provides for model portability by estimating a site-specific 
soil activity index relative to the Uppsala site (Andrén et 
al., 2007). Long-term soil carbon trends found in African 
field trial datasets can be characterized as typically either 
gently upward sloping, asymptotically downward sloping, 
or in steady state, depending upon treatments and local 
conditions, with inter-annual variations scattered around 
these overall long-term trends (Diels et al., 2004; Kamoni 
et al., 2007; McNair et al., 2007). This data scattered 
within the long-term trends is due to an inseparable 
combination of actual inter-annual variation (for example, 
large differences in carbon inputs between years) and 
inherent stochastic uncertainties in soil carbon mass 
quantification (Karlsson et al., 2003; Bricklemyer et al., 
2005; Ogle et al., 2007). Typically, the inter-annual 
dynamics seen in African datasets have proven difficult to 
simulate, even with some of the more complicated soil 
carbon models. For instance, in a study that applied 
RothC and Century models to long-term datasets from 
Kabete and Machang‟a in Kenya, long-term trends were 
generally well simulated by both models in most 
treatments, but inter-annual variations were absent from 
the simulations (Kamoni et al., 2007).ICBM was originally 
conceptualized as a model of minimal complexity with 
capabilities for reproducing both short- and long-term 
dynamics. The relative simplicity of the ICBM model 
structure seems to match both the gentle long-term 
dynamics and inherent uncertainties that typify data in 
most long-term African (and also most data sets from 
temperate climates) field trials. In this paper, a 
spreadsheet-based version of ICBM is presented and 
intended to assist soil scientists and managers of long-
term experiments, with emphasis on African conditions  
interested in soil C projections using limited climate, 
cropping systems and soil type data. This tool is aimed 
towards non-modelers, with the intent of providing a rapid 
means of producing estimates of impacts from various 
future management scenarios or to assess the sensitivity 
of existing long-term data in response to various 
experimental treatments. To demonstrate the suitability of 
ICBM for this purpose, we use data from the same long-
term field trial at Machang‟a, Kenya that has been used 
for modeling with RothC and Century (Kamoni et al., 
2007), as well as APSIM (Micheni et al., 2004). This 
provided a common basis for comparing modeling results  
and ease of use to these other approaches. 
 
 
MATERIALS AND METHODS 

 
Introductory carbon balance model (ICBM) 
 

The Introductory  Carbon  Balance  Model  (ICBM),  has  two  state  
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Table 1. The parameters of the ICBM model, typical dimensions and typical range of values used. 
 

Parameter Symbol Typical dimension Typical range 

Input i t ha
-1
 year

-1
 0-5 

Decomposition rate constant for Y kY Year
-1

 0.8 

Humification factor h Dimensionless 0.1-0.6 

Decomposition rate constant for O kO Year
-1

 0.006 

External control factor re Dimensionless 0.8-5 
 

Input also commonly is expressed as kg m
-2

 year
-1 

and kY and kO often, but not always, are unchanged from the original calibration. 
 
 
 

 
 
Figure 1. The ICBM model. i = (annual) input, Young C (Y) = young soil 

carbon, Old C (O) = old soil carbon, kY = fraction of Y that decomposes 
(per year), kO = fraction of O that decomposes (per year), h = 

humification coefficient, re = external influence coefficient. The index 
”SS” denotes the equation for calculating the steady-state value for that 
pool. Complete list of equations as well as strategies for estimating 
parameter values is given in Andrén and Kätterer (1997) 

 
 

 

variables or pools, “Young” (Y) and “Old” (O) soil carbon. ICBM has 
five parameters: i, kY, h, kO, and re (Table 1 and Figure 1). The 
“humification coefficient” (h) controls the fraction of Y that enters O 
and (1-h) then represents the fraction of the outflow from Y that 
becomes CO2–C.  

Parameter re summarizes all external influence (mainly climate) 
on the decomposition rates of Y and O. Note that re only affects 
decomposition rates; re does not influence i or h (Figure 1) (Andrén 
and Kätterer, 1997) for complete list of equations as well as 
strategies for estimating parameter values.  

The model was originally calibrated using data from a Swedish 
long-term agricultural field experiment with various amendments 
(manure, cereal straw and sewage sludge, etc) but also a black 
fallow kept since 1956 (Kirchmann et al., 2004).  

The model has been successfully applied to agricultural field data 
from Sweden (Karlsson et al., 2003), European field trials, Western 
and Eastern Canadian agricultural regions (Bolinder et al., 2006, 
2007a, 2008; Campbell et al., 2007) and Norwegian arable land 

(Kynding et al., 2012) has been adapted  to sub-Saharan African 
conditions (Andrén et al., 2007). ICBM has also been expanded to 
a larger family of related model structures, including more carbon 
pools and also nitrogen dynamics.  

The basic idea behind ICBM is to use an analytically solved, five-
parameter two-component model for interactive calculations of soil 
C balances in a 30-years perspective using a spreadsheet program. 
The reasons for this simple approach are: 
 

1. Easy and rapid to use and understand with usually only three 
parameters to „play‟ with using guessed or „rule-of-thumb‟  
parameter values. All parameter values used can be  reported  in  a  

small table, such that the readers can make their own judgments of 

their validity and can easily repeat or modify the exact model 
simulations presented. 
2. In the majority of cases, observed soil carbon dynamics in a 30-
years perspective as well as the precision of soil carbon mass 
measurements do not warrant a more complex model 
3. In spite of the model simplicity, complex and exact data sets and 
functions can be used to generate the parameter values used in the 
spreadsheet (Andrén et al., 2007). 
4. The simple core model can easily be inserted into more complex 

applications and run simultaneously as a simulation model for 
different climates, cropping systems and soils, with many different 
parameter settings, for example, for national soil C budgets (Andrén 
et al., 2008) or within a GIS grid. 
 
 
Making soil C projections 
 

ICBM can be used through an Excel
®
 spreadsheet 

(www.oandren.com/ICBM). The workbook has four or more input 
pages, and the user can input a unique set of parameters in each 
page (Table 2).  

For each parameter set, a 30-year projection is instantaneously 
made, and the results from using the different parameter 
combinations are presented in separate and combined graphs.  
 
 

Parameter values and initial carbon mass 
 

A comprehensive description of the initial parameterization of  ICBM
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Table 2. Excerpt from one page of the ICBM spreadsheet.  
 

i ky ko h re  Tot C0 Y0 O0 

1.213 0.800 0.006 0.120 1.800  14.820 0.820 14.000 
 

Yss Oss Tss   Y O 

0.842152 13.50 14.34  Residence times 1.250 166.667 
 

Calculate C mass after any time change underlined below  Percentage/year 55.067 0.59820 

Time, t Young, Y Old, O Total C  Half-lives 0.866 115.525 

50 0.84 13.7885 14.63     
 

The underlined values for i (t ha
-1

 year
-1

) , kY, kO, h, re, as well as the initial C mass divided into Y0 and O0 (t ha
-1

 in topsoil) are 

set by the user. Time, t is also set by the user and used to calculate soil C mass after the chosen number of years. In this 
example default values are used for h, kY and kO,. 

 

 
 

is given by Andrén and Kätterer (1997), and subsequently, we will 

suggest how to adapt the parameters to local conditions. First, 
parameter re, which summarizes the external influences on soil 
organic matter decomposition rates will be discussed. This 
parameter is mainly based on soil temperature and moisture, but it 
can also be modified according to different degrees of cultivation or 
oxygen starvation due to water-logging. Soil temperature and 
moisture can be calculated from daily meteorological data paired 
with soil and crop properties, and the daily activity can be 
calculated using a factor re_temperature × re_moisture. This approach is 

common in climate-dependent modeling and is a simple way of 
describing the fact that when one of the factors is close to zero, the 
value of the other factor does not matter much – for example, if the 
soil is very dry, almost no decomposition will take place even if the 
temperature is +35°C. The daily calculations of activity can be 
expressed as an annual mean, which in one value combines 
temperature and moisture conditions and their daily interaction. The 
degree of soil cultivation (or the difference between cereals and a 
grass ley) can then be applied as another multiplier, re_cult. The 
actual calculations of re that are used when climatic (daily 
temperature, rainfall and evapo-transporation), soil (wilting point, 
field capacity) and crop (green leaf area, degree of cultivation) data 
are available are made using a SAS program (SAS Institute, 2003) 
called W2re, but can also be calculated within a spreadsheet. When 
the soil properties used for calculation of water storage parameters 
(water content at wilting point and field capacity) are unknown, 
these can be calculated from soil texture data (Kätterer et al., 

2006). 
There is also a simplified climate parameter, re_clim, which uses a 

standard soil (clay loam) and cropping system (black fallow) to give 
a pure climatic factor for comparisons. The value for re_clim is 
calculated from standard meteorological data only (daily 
temperature, rainfall and evapo-transporation), normalized to 1 for 
Central Swedish climate, and typical values have been calculated 
for sub-Saharan Africa (Andrén et al., 2007) as well as Canada 
(Bolinder et al., 2007a). Table 3 shows re_clim values that can be 
used as starting points for using ICBM under different climatic 
conditions. If detailed climatic data are available, daily, monthly or 
annual re and re_clim can be calculated (Andrén et al.,  2007). 

Secondly, the annual input, i, is estimated as the sum of carbon 
inputs from the crop and manure. The approach we use for crop 
inputs is to apply allometric functions to yield data, that is, using 
estimates of the relations between crop yield, roots, stubble and 
straw (Paustian et al., 1990; Kuzyakov and Domanski, 2000; 
Bolinder et al., 2007b). Note that the allometric parameters can vary 
considerably within a plant species, for example, maize, depending 
on   variety.   Highly   productive   varieties  grown  under  favorable 

conditions tend to have a high harvest index, that is, the proportion 

of grain to total above-ground biomass (Johnson et al., 2006). The 
annual C input (i) can never be exactly measured, and in some 
cases, it is best to optimize this parameter to obtain a good fit to 
available soil carbon measurements (within reasonable limits). 

Thirdly, the humification coefficient, h, which determines the 
proportion of young soil C that becomes old soil C (humus) must be 
set. In the original ICBM paper (Andrén and Kätterer, 1997), how to 
estimate h using, for example, litter-bags was shown, and the 
default values to use when more detailed information is unavailable 

were also shown and exemplified as follows: crop residues about 
0.12, manure about 0.35, and processed sewage sludge which is 
about 0.5. When manure or sewage sludge is added, a weighted 
average for h based on the relative inputs from manure and crop 
residues is used. 

Parameters kY and kO have usually not been changed, since they 
are multiplied by re in the model equations and thus, an increase in 
re can be balanced by a reciprocal decrease in kY and kO (Figure 1). 
However, if the relative contributions of Y and O to total soil carbon 
mass at steady-state need to be changed, kY and kO can be set to 
other values (Campbell et al., 2007). 

Initial C mass in the topsoil is crucial for the outcome of the 
projections, if it is high, a decrease will be projected and if it is low, 
an increase will be projected. Since carbon mass is difficult to 
measure with high precision, it is sometimes better to modify the 
measured initial value to a value that fits the model projections, 
particularly, if the apparent changes between the initial and second 

sampling are unrealistic, for example, if the apparent increase in 
soil carbon mass is greater than the carbon added. The initial 
distribution between young and old C (Y0 and O0, Figure 1 and 
Table 2) can be set to the steady-state values calculated by the 
spreadsheet (Table 2). However, if the modeled period of time 
starts with, for example, an addition of mulch, Y0 can be set to a 
higher value. Alternatively, if the modeling is preceded by a long 
period of black fallow, Y0 can be set close to 0. 
 
 
RESULTS OF USING THE ICBM MODEL FOR SOIL C 
PROJECTIONS WITH DATA FROM AGRICULTURAL 
FIELD EXPERIMENTS IN KENYA 
 
If a rough estimate of the soil C balances in the 
experiment is wanted along with a projection of the 

development into the future, and only limited data is 
available (this would generally be the case  regardless  of  
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Table 3. Meteorological stations, sorted from N to S within a country, used for calculations of re_clim.  
 

Country Place Latitude Longitude 
Altitude 

(m) 

Mean temperature 

(°C) 

Precipitation 

(annual sum, mm) 

ETo 

(annual sum, mm) 
re_clim 

Sweden Karlstad 59° 24'N 13° 30'E 107 6.0 644.4 523.4 1 

Sweden Stockholm 59° 18'N 18° 03'E 44 7.0 542.2 595.1 1 

Chad Faya 18° 00’N 19° 10’E 234 28.4 6.5 5808.3 1.1 

Senegal Saint Louis 16° 01'N 16° 30'W 2 25.8 215.0 1746.2 2.3 

Togo Mango 10°,22’N 00° 22’E 145 27.9 1093.6 2163.5 4.3 

Congo Pointe Noire 04° 49’S 11° 54’E 17 24.9 1062.0 685.8 4.2 

Congo Brazzaville 04° 15’S 15° 15’E 314 25.3 1319.0 740.3 4.7 

Kenya Kalalu 0° 05’N 37° 10’E 2080 16.6 740.0 1254.5 2.2 

Kenya Matanya 0° 04’S 36° 57'E 1840 18.1 794.0 1493.7 2.1 

Kenya Muranga 0° 06’S 37° 00’E 1067 19.9 1083.0 1468.0 2.2 

Kenya Ahero 0° 09'S 34° 36'E 1200 22.5 1265.0 1730.0 4.1 

Kenya Kabete 01° 15’S 36° 46’E 1650 18.0 1069.8 1132.1 2.4 
 

Country, station name, latitude, longitude, altitude (m), Mean annual temperature (°C), Annual precipitation (mm), Reference crop evapotranspiration 
(ETo, mm), re_clim, which by default is normalized to 1 as the mean for the two Swedish stations, representing the calibration site (Revised from Andrén 

et al., 2007). 

 
 
 

location), the analysis will be based on a mixture of data 
and rules-of-thumb. A medium-term comprehensive 
manuring experiment was performed at Machang‟a 
(Embu), Mbeere District, Central Kenya, (0°47'S, 
37°40'E; altitude1060 m and annual rainfall 730 mm), and 
the experiment was run between 1989 and 2002 
(Kihanda et al., 2006). The experiment comprised several 
treatments but here we will concentrate on:  
 

i. F, pearl millet/sorghum/cowpea/maize rotation, NPK 
fertilizer each year 1993 to 2002 (51, 12, 30 kg ha

-1
 of N, 

P and K respectively); „ 
ii. B1, earlier receiving of 5 tons goat manure per year, 
but after 1993, receiving no manure or fertilizer;  
iii. C, a control receiving no fertilizer or manure.  
 

The results from this experiment have been used in 
several model applications. The performance of the 
APSIM model was tested by Micheni et al.,(2004), and 
Century and RothC were evaluated for East African 
conditions using this data set (Kamoni et al., 2007). 

The first step is to examine the measured soil C mass 
dynamics. Treatment C, which is unfertilized and not 
receiving manure, gave low yields and an average annual 
input of 0.71 tons carbon ha

-1
 (Kihanda et al., 2005). In 

spite of this very low input, soil carbon mass seemed to 
remain stable slightly above 10 t ha

-1
 (0 to 20 cm depth) 

after 1995 (Kamoni et al., 2007). The treatment receiving 
NPK fertilization (F) seems to be fairly close to steady-
state with no clear trend with time and an average C 
mass around 15 t ha

-1
. The manured treatment that had 

an increased carbon mass, 17 to 20 tons after four years 
of addition, reverted to about 15 tons after ca. 5 years 
(Kamoni et al., 2007). Thus, approximately, 10 t/ha 
seemed to be very stable or  inert  in  this  time span  and 

we can tentatively set 10 tons as an inert pool, that is, 
excluding this from our calculations. Note that ‟inert‟ does 
not mean that this pool never will decompose; it is 
assumed that it is inert in the 30-year perspective here. 
The soil carbon may be inaccessible through physical 
constraints (Feller and Beare, 1997) and/or chemically 
inert, such as charcoal (Glaser et al., 2002). Apparent 
differences in soil C mass between years are as high as 
over 2 tons (Figure 2) which partly can be due to 
differences in crop yields and thus, carbon input to soil 
between years and/or different weather conditions 
affecting decomposition in different years. However, 
estimates of soil carbon mass dynamics are based on 
field sampling followed by estimates of C concentration 
and bulk density and usually have a fairly low precision 
(Karlsson et al., 2003; Ogle et al., 2007), so an apparent 
difference may not be statistically significant. In fact, in 
the Machang‟a experiment, no significant differences 
were found in soil carbon concentrations between two 
treatments receiving 5 and 10 tons manure ha

-1
 year

-1
, 

respectively, during 1993 to 2003 (Kihanda et al., 2006).  
Parameter re, which summarizes external influences on 
decomposition rates for Machang‟a was estimated to be 
2.1, based the calculated re_clim value for Matanya (2.1, 0° 
04'S, 36° 57'E; 1840 m altitude and 794 mm annual 
rainfall) and Muranga (2.2, 0° 06'S, 37° 00'E; 1067 m 
altitude, 1083 mm annual rainfall) situated within 100 km 
from the Machang‟a site (Andrén et al., 2007). Parameter 
re_clim is calculated assuming a degree of soil cultivation 
normal for Western European cereal production, that is, 
annual plowing of topsoil to 25 cm depth and harrowing 
etc. It is assumed that the degree of cultivation is the 
same here (manual hoeing to 20 cm is twice a year and 
set equal to plowing to 25 cm once a year), so no change 
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Figure 2. Measured data (black dots) and ICBM projections 1993-2023 (solid line=total C, dotted line=old+inert C, thin 

line=cumulative C input; the difference between the solid and dotted line indicates the young pool); of soil carbon mass (0-

20 cm depth) in an agricultural field experiment in Kenya. Treatment „Fertilized‟ was NPK fertilized annually; Treatment 
„Control‟ received no fertilizer or manure; Treatment „Manure residual effect‟ received no NPK fertilizer but had 1989-1992 
been amended with 5 t ha-1 year-1 of goat manure; Imaginary treatment „Control to fertilized‟,assuming the control from 
1996 onwards became fertilized annually and that crop yields and carbon input became the same as in „Fertilized‟(the dot at 
year 1996 is the measured soil C mass in the control that year, and the dot at year 2026 indicate the steady-state value for 
treatment F).  

 
 
 
was made. The soil water storage capacity, that is, the 
difference between water content at field capacity and 
that at wilting point will affect water content and also the 
activity. For the soil used in this example for re_clim 
calculations, the difference is 13.5% by volume, and for 
the soil in this experiment, it is 12% (DUL-LL15, Table 2) 
(Micheni et al., 2004). We assumed that this small 
difference was not affecting the overall activity in the soil. 
Also, the original re_clim was calculated assuming no crop 
cover, which results in no transpiration and more water 
left in the soil and thus a slightly higher activity. Therefore 
we reduce re slightly to 2.1. The humification quotient, h, 
indicating the quality of the input plant residues, is set to 
0.12 according to the default values for plant residues. 
Calculating annual carbon inputs from plants to soil can 
be a complex process (Paustian  et  al.,  1990;  Kuzyakov 

and Domanski, 2000; Bolinder et al., 2007b). In this 
experiment, all plant residues except the harvested 
grains were returned to the respective plots at the end of 
every growing season (two crops/year), and the above-
ground dry matter yields were very variable between 
years, ranging between 0 and 12 t ha

-1
 (Micheni et al., 

2004), and grain yield showed a similar variability, 
ranging between 0 and 4 t ha

-1
 (Kihanda et al., 2006). 

Here, we used the already calculated values for annual C 
input, namely, 2.38 tons for F, 0.71 tons for C and 1.75 t 
ha

-1
 year

-1
 for treatment B1 receiving no NPK (Kihanda et 

al., 2005). Starting with treatment F, we have obtained 
parameters as listed in the top row of Table 4, with one 
exception, kO. This parameter had to be adjusted, since 
the default value 0.006 year

-1
 represented a Swedish clay 

loam   soil   and   was   based  on  an  analysis  assuming 
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Table 4. Parameter values used in the ICBM model.  
 

Parameter i h re Y0 O0 C0 C30 Css 

Fertilized 2.38 0.12 2.1 1.42 3.35 4.77 14.77 14.77 

Control 0.71 0.12 2.2 3.36 1.64 5.00 11.42 11.35 

Manure res. 1.75 0.12 2.1 0.71 7.93 8.64 13.90 13.48 

Fertil. Contr. 2.38 0.12 2.1 0.40 1.10 1.50 14.56 14.74 
 

Parameter descriptions are as used in Table 1. C0 = total initial C mass (t ha
-1

), C30= Projected C mass after 30 years, Css= 
Projected C mass at steady-state. Treatments in the experiment in Kenya (Kamoni et al., 2007): „Fertilized‟ = Treatment F, 
receiving NPK fertilizer; „Control‟ = C, not fertilized or manured; „Manure res.‟ = B1, residual effects of earlier annual 

applications of 5t manure. „Fertil. Contr.‟ = Modelled using the assumption that Control from 1996 onwards received fertilizer 
as Fertilized. Note: In all treatments, an inert fraction of 10 t ha

-1
 was excluded from the modeling (thus the total initial C in 

the top row was measured as 14.77), but added back to the final results for C30 and Css. In all treatments, kY and kO, were set 

to 0.8 and 0.041, respectively. 
 
 

 

no inert pool. As discussed earlier, the Machang‟a 
dataset seems to reflect that a significant fraction of the 
soil C pool was inert. Thus, the value of kO calibrated 
under Swedish conditions did not seem valid for the 
conditions at Machang‟a. Therefore, we optimized for the 
average value of all measurements assuming treatment F 
represents steady-state and reach the value for ko = 
0.041, or 6.8 times higher than the original kO.  

The initial mass of non-inert carbon in the soil was set 
to the average of the measured values (4.77 tons) and 
the initial amount of young carbon was set to the amount 
at steady-state, calculated by the spreadsheet (1.42 
tons). The results are not very surprising such that the 
model indicates that this treatment is in steady-state 
(Figure 2a and b).  

However, applying basically the same parameter set to 
the control (C) treatment may reveal if the assumptions 
made are suitable. We only change the input to 0.71 tons 
(Table 4) and since there is very little crop growth, and 
transpiration, we change re back to 2.2 (description of 
re_clim is in the foregoing). If accepted that the 
observations indicate a rapid decrease from 1993 to 1995 
(possibly because of large earlier inputs) and thereafter, 
a small decrease, we can try to emulate this. We can set 
O0 to the average between 1995 and 2003 (1.64 tons, 
since we have assumed that we have 10 tons of inert C). 
Then, we can set Y0 as the difference between the 1993 
observation and O0. Thus, we assume that the earlier 
unknown conditions have resulted in a large input of fresh 
plant material. The results (Table 4 and Figure 2a) mimic 
the initial results fairly well, and indicate a steady-state 
mass of 11.35 tons, with a slow decline towards this 
value. Note that the low input rapidly reduces the Y 
fraction to less than 0.5 tons (Figure 2b). 

To model the treatment that had earlier received 5 tons 
manure annually and had a higher soil C mass, we 
reduce the input to 1.75 tons and use the initial measured 
value (18.64 tons in total and 8.64 when inert fraction 
excluded) as starting point. The other parameters remain 
the same as in the F treatment. The higher initial C  mass 

and the lower input result in a decreasing trend (Figure 
2c), and a steady-state value of 13.48 tons, and after 30 
years we would expect the soil C mass still to be slightly 
higher than that (Table 4). We could, however, assume 
that Y0 was somewhat higher due to the earlier input, 
and if we set that proportion higher, the simulated 
decrease will be more rapid initially (not shown).  

We can also perform a “what-if” experiment. Let us 
assume that the control in 1996 had been changed to the 
same fertilizer regime as that in the fertilized treatment, 
and that the crop immediately responded so that the 
carbon input became similar to that in the fertilized 
treatment. Thus, we use the 1996 carbon mass from the 
control, and i and re from the fertilized treatment (Table 
4). We assumed that the initial mass in 1996 was the 
measured as 11.50 kg (including 10 kg inert carbon) and 
that the young pool was in steady-state, 0.4 t ha

-1
. The 

increase in annual input rapidly increases the young pool, 
while the old pool increases more slowly (Figure 2c and 
d). After 30 years, however, the control almost reached a 
steady-state level for the fertilized treatment (black dot at 
year 2026). This also illustrates the amount of the extra 
input that was lost and which did not really contribute to 
soil carbon mass; after 10 years the increase in soil C is 
only 2.25 tons (Figure 2), but the extra added crop 
residue C is 16.7 tons (10 years of 2.38 minus 0.71 tons 
extra input).  
 
 
DISCUSSION 
 
A reasonable question is whether a model developed for 
a cold temperate climate is valid in a tropical climate. In 
principle, the re parameter and the functions used to 
calculate activity in the soil from temperature and water 
conditions should compensate for differences in climate, 
and these functions are not unique for this model (Andrén 
et al., 2007). However, the data set from Kenya used 
here clearly indicates that including, or rather excluding 
an inert fraction was necessary. The original  estimate  of 



 

 
 
 
 
kO was made using data from a long-term black fallow on 
a clay loam soil in Sweden (Andrén and Kätterer, 1997), 
assuming no inert fraction. Later investigations based on 
the same data set suggested that a better fit to additional 
isotope measurements would be obtained by assuming 
50% inert soil carbon (Petersen et al., 2005). This would 
mean that to obtain the observed dynamics, kO has to be 
increased, and in the current application with a major 
fraction apparently inert, the best fit was obtained with a 
much higher kO than that initially used. This raises an 
issue related to inert carbon in modeling soil C dynamics 
in African systems, and this issue seems pertinent for all 
soil C models, not just ICBM. Importantly, the size of the 
inert C pool is reasonably estimated on a particular site to 
soil C modeling in Africa? Here, this study‟s assessment 
of the Machang‟a dataset suggested a 10 t ha

-1
 inert pool, 

which is a large fraction of the initial soil C used in the 
simulations (~ 55%). 

In the APSIM model application to the Machang‟a 
dataset, the authors assumed a similar fraction of inert C 
from the initial soil carbon measurement (Micheni et al., 
2004). However, the RothC application to the Machang‟a 
data assumed only a 3 t ha

-1
 inert pool (Kamoni et al.. 

2007). In a European application, the modelers demon-
strated a high sensitivity of soil C model predictions to the 
initial assumption on the inert content in soil C 
measurements (Puhlmann et al., 2006). Our results here 
support that same idea, where we had to change the 
value of kO to accommodate different assumptions on the 
initial size of the inert pool. It is therefore, our opinion that 
this issue has not (to date) received enough attention in 
the literature regarding modeling soil C dynamics in long-
term African datasets. If this parameter can be estimated 
by chemical analysis, it would certainly help support 
modeling assumptions and to reduce uncertainties in 
calibrated model parameters. The importance of these 
stable C fractions on soil C dynamics could also have 
land-use management applications, particularly, with 
regards to the production and use of biochar as soil 
fertility amendments.  

In the study of Kamoni et al. (2007), simulation results 
were presented using both RothC and Century for three 
of the different experimental treatments at Machang‟a. In 
general, the long-term trends in the observed data were 
simulated acceptably, but neither of the models captured 
inter-annual variations very well. It should also be noted 
that the long-term trends in the Machang‟a dataset are 
not very dynamic in any of the treatments (either flat or 
gently sloping SOC trends) and as such, simulating the 
long-term trends in this dataset by itself does not provide 
strong evidence of a model‟s capabilities (including 
ICBM). It is our intent to develop more general parameter 
sets for ICBM that will be useful for a wide variety of 
regional conditions in Africa. The preliminary results 
presented herein suggest a strong potential for ICBM, 
with its simple and easily accessible  model  structure,  to 
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provide rapid and accurate predictions of long-term SOC 
dynamics. However, future investigations are required 
(and ongoing) to achieve this. For example, we intend to 
calculate the simple climate index from a large number of 
African weather data sets, using the already developed 
methodology (Andrén et al., 2007). There have also been 
speculations and calculations regarding the possibility 
that decomposition in situ of roots is lower than measured 
on roots sampled from soil, and that the h values would 
be considerably higher than earlier believed Kätterer et 
al. (2011). In principle, we can use different h values for 
roots and shoots, but we lack sufficient data so far. If root 
h has been underestimated, this may help to explain, for 
example, the minor effects of adding cut bush material to 
plots as reported by Gentile et al. (2010). 

As observed in the foregoing, we touched on the issue 
of uncertainty as related to parameter values in a model 
and the influence that this can have on future predictions. 
Recognition of uncertainty in soil C modeling, and all 
environmental models in general, is receiving increased 
attention in the scientific literature. In our analysis here, 
there are uncertainties in estimates of soil C inputs, soil 
SOC dynamics, climatic conditions, modeling assump-
tions such as the assumed size of the inert pool, and 
model structural errors, none of which are acknowledged 
in our presentation of predicted (future) trends. This is 
entirely typical of the majority of soil carbon modeling 
efforts, both in Africa and worldwide, although, some 
efforts have recently been made to quantify uncertainties 
(Ogle et al., 2006, 2007).  

There are also numerous unaccounted processes that 
can contribute to uncertainties in interpreting modeling 
results. For example, the Machang‟a dataset did not 
show a statistical significant response in soil C in the 10 t 
ha

-1
 year

-1 
manure treatment compared to the 5 t ha

-1
 

year
-1

 (Kihanda et al., 2005). This of course, is a difficult 
scenario to reproduce in any soil-C model, but perhaps 
the “real” reason in the field may have been related to a 
“saturated” soil response leading to rapid decomposition 
(Stewart et al., 2007), or rain-induced outwash of manure 
on the soil surface, or earthworm or dung beetle 
populations have increased and buried manure below 
sampling depth or termites have carried manure out of 
the plots (Brussaard et al., 2006), or that the high rates of 
manure applied increase water storage capacity and thus 
increased re. In recent years, there have been significant 
advances in the field of uncertainty analysis, many of 
which have occurred in the field of hydrological modeling 
(Todini, 2007). There are now numerous Monte Carlo 
methods for uncertainty analysis that can be used to 
explicitly quantify uncertainty in parameter values and 
predicted time series. We strongly advocate the use of 
uncertainty analysis, such as the GLUE methodology 
(Beven and Freer, 2001), and we will be using this tool 
ourselves in the future with ICBM. 

The typical result of model  calibration  with  uncertainty 
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analysis is the representation of model parameters as 
distributions, rather than single point values, and time 
history predictions as credibility bands, rather than single 
line projections. Without explicit recognition of 
uncertainties, the true needs for better datasets and for 
models with appropriate levels of functionality can be 
easily overlooked (Pappenberger and Beven, 2006). The 
uncertainty analysis may also help in formally evaluating 
how complex models are warranted given the precision of 
the available data – and the truth of the bold statements 
given in the study‟s introduction may be revealed. 
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